Question

left hand derivative of  f(x) = [x]sin( pie x) at x=k where k is an integer,

Joshi sir comment

 

Left hand derivative of given function at x = k (k is an integer) is

   limh -> 0 {f(k-h) - f(k)}/ {k-h-k}  

= lim-> 0 {[k-h] sin π(k-h) - [k] sin πk}/{-h}                  now 2 cases arise for even and odd k

 

first case

= limh ->0  (k-1) sin (-πh) - 0 / (-h)                          if k is even ,   here we used sin πk = 0 and sin (2π-x) = sin (-x) 

= π(k-1)                   here we used sin (-πx)/(-πx) = 1

   

second case

= limh->0 (k-1) sin (πh) - 0 / (-h)                            if k is odd,    here we used sin πk = 0 and sin (3π-x) = sin x

= -π(k-1) 

 

 

Solution by Joshi sir.

 

Left hand derivative of given function at x = k (k is an integer) is

   limh -> 0 {f(k-h) - f(k)}/ {k-h-k}  

= lim-> 0 {[k-h] sin π(k-h) - [k] sin πk}/{-h}                  now 2 cases arise for even and odd k

 

first case

= limh ->0  (k-1) sin (-πh) - 0 / (-h)                          if k is even ,   here we used sin πk = 0 and sin (2π-x) = sin (-x) 

= π(k-1)                   here we used sin (-πx)/(-πx) = 1

   

second case

= limh->0 (k-1) sin (πh) - 0 / (-h)                            if k is odd,    here we used sin πk = 0 and sin (3π-x) = sin x

= -π(k-1) 

so for even and odd k answer will be different.

Read 1 Solution.

limh--0 f (k-h) - f(k)/-k  use the follwing data sin πk =0 as k are integers 

[k-h]=k-1

after that u will get 0/0 form again use L.Hospital rule .then put the limit and get the answers .

answer will have 2 values ax cosπ=-1 wheras cos2π =1

NIKHIL VARSHNEY 12 year ago is this solution helpfull: 1 1

Submit Your Answer


please login to submit your answer

Login Here

Register