If     a sinx + b cos(x+θ) + b cos(x-θ) = d, then the minimum value of |cos θ| is equal to :

sir i have expanded cos(x+θ) & cos(x-θ) and after that i got the equation: (d sec x - a tanx)/2b = cos θ. now , can i write  minimum value of (d sec x -a tanx) = (d²-a²)^(1/2).. as all the options contain (d²-a²)^(1/2).......or do tell the other hint to solve it..

Joshi sir comment

Dear amit your starting steps are correct 

now let us consider that   d secx - a tanx  = y

on differentiating we will get d secx tanx - a sec2x = dy/dx

on comparing with 0 we get d tanx = a secx       or               sinx = a/d               so         secx = d/√(d2-a2)           and   tanx = a/√(d2-a2)

so minimum of given expression = [d2/ √(d2-a2)] - [a2/√(d2-a2)]  =        √(d2-a2)   

Submit Your Answer

please login to submit your answer

Login Here

Username / Email :

Password :

Register | Forget Password