## Question

### Tangents are drawn to the circle x^2 + y^2=12 at the points where it is met by the circle x^2 +y^2 - 5x + 3y - 2=0.Find the point of intersection of these tangents.

**Joshi sir comment**

sovle the two eqs for x and y,

method :

### x^2 + y^2=12

on putting this in 2nd eq. we get -5x+3y = -10 so x = (3y+10)/5

so [(3y+10)/5]^{2 }+ y^{2}= 12

now get y then x, then get the tangents in the first circle and then intersection point of the tangents.