Question

1) Find the invariants of the matrix

          0  1  0

          0   0  0

          0   0  0             of a linear transformation T in A(v) ?

2)   Find the companion matrix of the polynomial ( x+1)2     ?

 

3)  show that two real symmetric matrices are congruent if and only if they have the same rank and signature?

 

Joshi sir comment

 

rank(A) = 1 
det(A) = 0 
trace(A) = 0 
The matrix is not symmetric. 

characteristic polynomial of the given matrix is x3 

companion matrix of the polynomial (x+1)2

 0     1

-1    -2

 

 

A real symmetric matrix of rank r is congruent over the field of real numbers to a canonical matrix


                                      ole6.gif


The integer p is called the index of the matrix and s = p - (r - p) is called the signature.

 

The index of a symmetric or Hermitian matrix is the number of positive elements when it is transformed to a diagonal matrix. The signature is the number of positive terms diminished by the number of negative terms and the total number of nonzero terms is the rank.


now solve it

Submit Your Answer


please login to submit your answer

Login Here

Register