Question
sinA + sinB + sinC = 4cosA/2.cosB/2.cosC/2
Joshi sir comment
sinA + sinB + sinC = 2sin[(A+B)/2]cos[(A-B)/2] + 2sinC/2cosC/2
= 2sin[(π-C)/2]cos[(A-B)/2] + 2sinC/2cosC/2
= 2cosC/2cos[(A-B)/2] + 2sinC/2cosC/2
= 2cosC/2* [cos[(A-B)/2]+[cos(A+B)/2] here sinC/2 = cos(A+B)/2
now use cosC + cosD = 2 cos[(C+D)/2]cos[(C-D)/2]
You should remember that the given formula is based on a triangle.