Question

There is some amount of water in the beaker, and a vertical  rod is passing through the centre of the circular base of the cylindrical beaker which is rotated with angular velocity ω  , then water takes a particular shape(miniscus is formed). Find the equation of the miniscus of water when the mid point of  the miniscus just touches the bottom surface of the beaker?

Joshi sir comment

after making the diagram, complete the miniscus as a sphere, then following conditions will be obtained

1) h = R(1-cosθ)  here h, R and θ are height of miniscus, radius of the sphere and  contact angle.

2) R = r/cosθ, r is the radius of beaker

3) tanθ = g/rw2

4) πr2hρ - πR3ρcos2θ = 2πrTcosθ

There are 4 equations, remove R, θ and T and get a relation between h and r in terms of g, w, ρ and π

Submit Your Answer


please login to submit your answer

Login Here

Register