33 - Trigonometry Questions Answers
(iii) tan69∘+tan66∘+1=tan69∘⋅tan66∘.
what is the angular difference between the +j and -j ?
OR
+4j and -4j ?
180 degree
sin‾¹(sin2) + sin‾¹(sin4) + sin‾¹(sin6) = ?
sin‾¹(sin2) + sin‾¹(sin4) + sin‾¹(sin6)
= (π-2) + (π-4) + (6-2π)
= 0
Solve
tanx-3cotx=2tan3x(0<x<360)
cosx-sinx=cosy-siny
cos2xcotx+1=cos2x+cotx
tanx - 3/tanx = 2[3tanx-tan3x]/[1-3tan2x]
so [tan2x - 3]/tanx = 2tanx[3-tan2x]/[1-3tan2x]
so [tan2x - 3][1-3tan2x] = 2tan2x[3-tan2x]
so [tan2x - 3][1-3tan2x] + 2tan2x[tan2x-3] = 0
so [tan2x - 3][1-tan2x] = 0
so tanx = 1, -1, √3, -√3
now check the values satisfying last eq.
then put these values in 2nd eq. to get answer.
Find the value :-
(tan69 +tan66) / (1 - tan69.tan66)
use formula of tan(A+B)
Find the max. and min. value of
y = 7cosA + 24sinA
7cosA + 24sinA
= 25[7cosA/25 + 24sinA/25] = 25[cosAcosB + sinAsinB] where tanB = 24/7
= 25cos[A-B] max and min of cos[A-B] = 1 and -1
so max. = 25 and min. = -25