33 - Trigonometry Questions Answers

Maths >> Trigonometry >> General Trigonometry Engineering Exam

Prove that :-

tanA + 2tan2A + 4tan4A + 8cot8A = cosecA / secA

Asked By: ADARSH
is this question helpfull: 0 0 submit your answer
Joshi sir comment

We have to prove

tanA + 2tan2A + 4tan4A + 8cot8A = cosecA / secA

or tanA + 2tan2A + 4tan4A + 8cot8A = cotA

or 2tan2A + 4tan4A + 8cot8A = cotA - tanA

or tan2A + 2tan4A + 4cot8A = [1-tan2A]/2tanA

or tan2A + 2tan4A + 4cot8A = cot2A

or 2tan4A + 4cot8A = cot2A - tan2A

or tan4A + 2cot8A = [1-tan22A]/2tan2A

or tan4A + 2cot8A = cot4A

or 2cot8A = cot4A-tan4A

or cot8A = [1-tan24A]/2tan4A

it is true so proved

Prove that :-

sin(A+B+C+D) + sin(A+B-C-D) + sin(A+B-C+D) + sin(A+B+C-D) = 4sin(A+B).cosC.cosD

Asked By: ADARSH
is this question helpfull: 1 0 submit your answer
Joshi sir comment

sin(A+B+C+D) = sin(A+B)[cosCcosD-sinCsinD]+cos(A+B)[sinCcosD+cosCsinD]

similarly solve all the terms and add all these terms for getting answer

((1(secA.secA-cosA.cosA))-(1/(cosecA.cosecA-sinA.sinA))).sinA.sinA.cosA.cosA=(1-cosA.cosA.sinA.sinA)/(2+cosA.cosA.sinA.sinA)

Asked By: VISHVESH CHATURVEDI
is this question helpfull: 4 1 submit your answer
Joshi sir comment

Submit the correct question, In first bracket / will be there so

((1/(secA.secA-cosA.cosA))-(1/(cosecA.cosecA-sinA.sinA))).sinA.sinA.cosA.cosA

= [cos2A/sin2A(1+cos2A) - sin2A/cos2A(1+sin2A)]sin2Acos2A

= [cos4A(1+sin2A) - sin4A(1+cos2A)] / [(1+sin2A)(1+cos2A)]

now solve

 

 

 

 

if x is any real number and cosA=x^2+1/2x then cos A value is 

 

Asked By: RAMACHANDRAM
is this question helpfull: 2 1 submit your answer
Joshi sir comment

x2+1 > 2x so cosA>1 which is not possible

2cos7x/cos(3)+sin(3)>2^cos2x
Asked By: AARSHI
is this question helpfull: 10 0 submit your answer
Joshi sir comment

Please submit what we have to do and also correct the question 

it is cos3 or cos3x 

(tanx)^2(tan3x)^2(tan4x)=(tanx)^2-(tan3x) ^2 + tan4x.
Asked By: AARSHI
is this question helpfull: 13 1 submit your answer
Joshi sir comment

I dont know what the question is but if the question is to solve this eq. then the method will be as given below

tan2x tan23x tan4x = tan2x  - tan23x + tan4x

so tan4x =  [tan2x  - tan23x] / [tan2x tan23x-1]

now split RHS terms by formula x2-y2= (x+y)(x-y)

so RHS = tan4xtan2x 

now solve

if x=2Cosθ-Cos2θ and y=2Sinθ-Sin2θ prove that dy/dx=tan(3θ/2)

Asked By: SARABJEET
is this question helpfull: 4 0 submit your answer
Joshi sir comment

calculate dx/dθ and dy/dθ

then dy/dx = [2cosθ-2cos2θ]/[-2sinθ+2sin2θ]

now solve

use cosC-cosD = 2sin[(C+D)/2]sin[(D-C)/2]

and sinC+sinD = 2sin[(C+D)/2]cos[(C-D)/2]

sinA + sinB + sinC = 4cosA/2.cosB/2.cosC/2

Asked By: AVI GARG
is this question helpfull: 3 0 submit your answer
Joshi sir comment

sinA + sinB + sinC = 2sin[(A+B)/2]cos[(A-B)/2] + 2sinC/2cosC/2

                                  = 2sin[(π-C)/2]cos[(A-B)/2] + 2sinC/2cosC/2

                                  = 2cosC/2cos[(A-B)/2] + 2sinC/2cosC/2

                                  = 2cosC/2* [cos[(A-B)/2]+[cos(A+B)/2]                     here sinC/2 = cos(A+B)/2

now use cosC + cosD = 2 cos[(C+D)/2]cos[(C-D)/2]

You should remember that the given formula is based on a triangle. 

If cos-1x - cos-1(y/2) = α , then 4x2-4xycosα + y2 is equal to ?

Asked By: AMIT DAS
is this question helpfull: 12 6 submit your answer
Joshi sir comment

according to the given condition 

cos-1x  =  cos-1(y/2)  +  a

so x = cos ( cos-1y/2   +  a)

so x = y/2 cosa  -  sin cos-1y/2 + sina

so x = y/2 cosa  - [1-(y2/4)]1/2 + sina

so x - sina - y/2 cosa = -[1-(y2/4)]1/2

now square both side and solve

 

If  sin-1a + sin-1b+ sin-1c = π , then the value of { a√(1-a2) + b√(1-b2) + c√(1-c2)}

Asked By: AMIT DAS
is this question helpfull: 8 4 submit your answer
Joshi sir comment

let sin-1a = A ,    sin-1b = B    and    sin-1c= C 

so  { a√(1-a2) + b√(1-b2) + c√(1-c2)}   = sinAcosA + sinBcosB + sinCcosC   = 1/2 (sin2A+sin2B+sin2C)

                                                                                                          = 1/2 (4sinAsinBsinC)

                                                                                                          = 2abc                                                    

Login Here

Register