33 - Trigonometry Questions Answers
Prove that :-
tanA + 2tan2A + 4tan4A + 8cot8A = cosecA / secA
We have to prove
tanA + 2tan2A + 4tan4A + 8cot8A = cosecA / secA
or tanA + 2tan2A + 4tan4A + 8cot8A = cotA
or 2tan2A + 4tan4A + 8cot8A = cotA - tanA
or tan2A + 2tan4A + 4cot8A = [1-tan2A]/2tanA
or tan2A + 2tan4A + 4cot8A = cot2A
or 2tan4A + 4cot8A = cot2A - tan2A
or tan4A + 2cot8A = [1-tan22A]/2tan2A
or tan4A + 2cot8A = cot4A
or 2cot8A = cot4A-tan4A
or cot8A = [1-tan24A]/2tan4A
it is true so proved
Prove that :-
sin(A+B+C+D) + sin(A+B-C-D) + sin(A+B-C+D) + sin(A+B+C-D) = 4sin(A+B).cosC.cosD
sin(A+B+C+D) = sin(A+B)[cosCcosD-sinCsinD]+cos(A+B)[sinCcosD+cosCsinD]
similarly solve all the terms and add all these terms for getting answer
((1(secA.secA-cosA.cosA))-(1/(cosecA.cosecA-sinA.sinA))).sinA.sinA.cosA.cosA=(1-cosA.cosA.sinA.sinA)/(2+cosA.cosA.sinA.sinA)
Submit the correct question, In first bracket / will be there so
((1/(secA.secA-cosA.cosA))-(1/(cosecA.cosecA-sinA.sinA))).sinA.sinA.cosA.cosA
= [cos2A/sin2A(1+cos2A) - sin2A/cos2A(1+sin2A)]sin2Acos2A
= [cos4A(1+sin2A) - sin4A(1+cos2A)] / [(1+sin2A)(1+cos2A)]
now solve
if x is any real number and cosA=x^2+1/2x then cos A value is
x2+1 > 2x so cosA>1 which is not possible
Please submit what we have to do and also correct the question
it is cos3 or cos3x
I dont know what the question is but if the question is to solve this eq. then the method will be as given below
tan2x tan23x tan4x = tan2x - tan23x + tan4x
so tan4x = [tan2x - tan23x] / [tan2x tan23x-1]
now split RHS terms by formula x2-y2= (x+y)(x-y)
so RHS = tan4xtan2x
now solve
if x=2Cosθ-Cos2θ and y=2Sinθ-Sin2θ prove that dy/dx=tan(3θ/2)
calculate dx/dθ and dy/dθ
then dy/dx = [2cosθ-2cos2θ]/[-2sinθ+2sin2θ]
now solve
use cosC-cosD = 2sin[(C+D)/2]sin[(D-C)/2]
and sinC+sinD = 2sin[(C+D)/2]cos[(C-D)/2]
sinA + sinB + sinC = 4cosA/2.cosB/2.cosC/2
sinA + sinB + sinC = 2sin[(A+B)/2]cos[(A-B)/2] + 2sinC/2cosC/2
= 2sin[(π-C)/2]cos[(A-B)/2] + 2sinC/2cosC/2
= 2cosC/2cos[(A-B)/2] + 2sinC/2cosC/2
= 2cosC/2* [cos[(A-B)/2]+[cos(A+B)/2] here sinC/2 = cos(A+B)/2
now use cosC + cosD = 2 cos[(C+D)/2]cos[(C-D)/2]
You should remember that the given formula is based on a triangle.
If cos-1x - cos-1(y/2) = α , then 4x2-4xycosα + y2 is equal to ?
according to the given condition
cos-1x = cos-1(y/2) + a
so x = cos ( cos-1y/2 + a)
so x = y/2 cosa - sin cos-1y/2 + sina
so x = y/2 cosa - [1-(y2/4)]1/2 + sina
so x - sina - y/2 cosa = -[1-(y2/4)]1/2
now square both side and solve
If sin-1a + sin-1b+ sin-1c = π , then the value of { a√(1-a2) + b√(1-b2) + c√(1-c2)}
let sin-1a = A , sin-1b = B and sin-1c= C
so { a√(1-a2) + b√(1-b2) + c√(1-c2)} = sinAcosA + sinBcosB + sinCcosC = 1/2 (sin2A+sin2B+sin2C)
= 1/2 (4sinAsinBsinC)
= 2abc