575 - Physics Questions Answers

A particle of mass m = 2kg is placed on the top of a hemisphere of M 4 kg. The hemisphere is placed on smooth ground. The particle is displaced gently. Then ratio of normal and pseudo force(seen from hemisphere frame) acting on particle when theta = 30 degree. Assume particle remain in contact with hemisphere.

Asked By: GUDDU KUMAR
is this question helpfull: 2 0 submit your answer
Joshi sir comment

Let the acceleration of hemisphere is ah N sinθ = Mah N/mah = M/msinθ  Here pseudo force is considered due to acceleration of hemisphere 

a small ball of mass 1kg and a charge 2/3 uC is placed at the center of a uniformly charged sphere of radius 1m and charge 1/3 mC. a narrow smooth horizontal groove is made in the sphere from centre to surface as shown in figure. the sphere is made to rotate about its vertical diameter at a constant rate of 1/2pi revolutions per second. find the spedd w.r.t ground with which the ball slide out from the groove. neglect any magnetic force acting on ball?

Asked By: VISHNU VARDHAN
is this question helpfull: 6 6 submit your answer
Joshi sir comment

Potential difference from centre to surface = 3V/2 - V = V/2 here V = kq/r (q is charge of sphere) mvr2/2 = VQ/2 (Q is charge of particle) vr is radial velocity Besides tangential velocity due to rotation of sphere = rω=r2πn now solve  

A small ball is thrown from foot of a wall with minimum possible velocity to hit a bulb B on the ground at a distance L away from the wall.Find the expression for height h of shadow of the ball on the wall as a function of time t.Acceleration due to gravity is g.

Asked By: MUDIT
is this question helpfull: 2 0 read solutions ( 1 ) | submit your answer
Joshi sir comment
Asked By: BHASKAR JHA
is this question helpfull: 1 1 submit your answer
Joshi sir comment

By volume comparision radius of combined drop = 21/3r net charge in the new drop = 2q now put these values in the formula of potential 

How to solve this?
Asked By: AVRANIL SAHA
is this question helpfull: 7 0 submit your answer
Joshi sir comment

In first case F = 2T = 150 so T = 75 newton,  Now in second case system is free to move acceleration of the system a = F/20 for 10 kg rod F-2T = 10a = 10(F/20) = F/2 F-(F/2)=2T F=4T = 300 newton 

what is the moment of inertia of a cube about its diagonal?

Asked By: SHIV GOVIND
is this question helpfull: 1 1 submit your answer
Joshi sir comment

Moment of inertia of a cube about a line perpendicular to its one face and passing through its centre is ma2/6 so about diagonal inertia = l2Ix+m2Iy+n2Iz  = (l2+m2+n2)Ix    (here Ix=Iy=Iz) = Ix  = ma2/6 l,m,n are direction cosines of three lines passing througe centre of cube and perpendicular to each other

While making this paper, I stayed up till late at night working with candle light. I had two

candles of equal length L lit and placed at the same time, as shown in the figure. Immediately

thereafter I noticed that the shadow of the first candle on the left wall is not changing in

length, and the shadow of the second candle on the right wall is being shortened at a speed v.

(Take d1

= 10 cm, d2

= 20 cm, d3

= 30 cm, v = 1 mm/s, L = 20 cm.)

Asked By: AAYUSH MALAVIYA
is this question helpfull: 0 1 submit your answer
Joshi sir comment

Problem is interesting yet not complete. Complete it to get answer 

thanks

Initially the spheres a and b are at potential be a and b respectively now sphere b is earthd by closing the switch the poential of a will become

Asked By: ROMEO ROMI
is this question helpfull: 1 3 submit your answer
Joshi sir comment

No meaning can be incurred by this language. Rectify it for getting answer

Asked By: DARIUS
is this question helpfull: 7 0 submit your answer
Joshi sir comment

Since thickness is same so force per unit length should be same  Force per unit length = F/2πR  Charge density in the sphere is proportional to E so F α qE α σAE α E2R2 Thus force per unit length α E2R2/2πR α E2R Now compare the two cases

Asked By: DARIUS
is this question helpfull: 7 1 submit your answer
Joshi sir comment

At a general point -2Tsinθ = ma    (θ is measured from horizontal) a = -2Mgθ/m = -2Mgy/ml compare with a = -ω2y ω=2Mgml            (1) Now for max displacement of small m mg(h+y) = 2Mgx and x = y2/2l on solving this quadratic eq. for y/l we get  yl-m2M=mMhlyl=mMhl  (given that mM <<hl) so x = m2Mh       (2) so vmax = xω now solve

Login Here

Register